
Tyler Loewen - loewent4@myumanitoba.ca

Dynamic Pathfinding Algorithms and Techniques
Tyler Loewen

University of Manitoba
Manitoba

Canada
loewent4@myumanitoba.ca

Abstract

Pathfinding is used in a large number of domains ranging from games, autonomous

vehicles, drones, and road networks to name a few. Pathfinding is an important component in

many applicaGons and has been a focus of research for decades. As applicaGons of pathfinding

are becoming increasingly demanding with complex and dynamic environments the

performance and efficiency of pathfinding is as crucial as ever. This paper explores some of the

different algorithms and techniques used to create dynamic pathfinding soluGons. It describes

Brute-Force Replanning (BFR), Basic D* (BD*), and Focussed D* (FD*) algorithms and how they

can be used to find paths from an agent to a goal in a dynamic environment. The performance

of BFR, BD*, and FD* algorithms are compared, and conclusions are drawn about opGmal use

cases for the algorithms. An alternaGve method of implemenGng a dynamic pathfinding

algorithm using neural networks is also explored. Finally, the benefits and drawbacks of these

algorithms are compared and contrasted.

1. IntroducGon

Tyler Loewen - loewent4@myumanitoba.ca

Dynamic pathfinding is used across many different domains such as video games, robot

navigaGon, and various networks such as road, water, electricity, and computer networks

[Kumari and Geethanjali, 2010]. Dynamic pathfinding can be implemented using algorithms

such as Brute-Force Replanner (BFR), Basic D* (BD*), and Focussed D* (FD*) [Stentz, 1995b,

1995a; Graham et al., 2005]. Each algorithm can be implemented using different techniques

such as neural networks or waypoints, among others [Graham et al., 2005; Wang and Lin, 2012].

Many domains require agents to navigate from an iniGal posiGon in an environment to a

goal posiGon. If the environment is staGc and the locaGons of all obstacles are previously known

to the agent, tradiGonal A* pathfinding can be used. In this case, the algorithm computes the

opGmal path off-line (i.e. while the agent is not navigaGng) before the agent begins navigaGng

the path towards the goal [Stentz, 1995b]. Many domains do not have staGc environments such

as game worlds with moving enemies or a vehicle’s autopilot system with other moving

vehicles. Besides completely staGc, the environment may contain a mixture of staGc and

dynamic objects, making calculaGng the opGmal path off-line using A* not feasible due to the

constantly moving objects [Stentz, 1995b]. Also, the agent may only have either parGal or no

informaGon about the environment which requires the agent to have some method of sensing

its surroundings [Stentz, 1995b]. Many different algorithms have been created to solve this

problem of pathfinding dynamic environments in real-Gme. The next three secGons describe

and compare three algorithms for achieving pathfinding in a dynamic environment.

2. Brute-Force Replanner

The Brute-Force Replanner algorithm (BFR) is an A*-based algorithm that can be used in

a way that allows for dynamic pathfinding. First, the agent must have a form of sensors that can

Tyler Loewen - loewent4@myumanitoba.ca

be used to detect its nearby surroundings [Graham et al., 2005]. These may be physical sensors

on a robot or rays cast from a game character [Stentz, 1995b, 1995a; Graham et al., 2005]. Next,

the iniGal state of the environment is recorded which includes the current posiGon of both staGc

and dynamic objects. The algorithm then uses this staGc state of the environment to plan a path

towards the goal. The agent does not begin moving towards the goal unGl the path calculaGon is

complete [Stentz, 1995b]. If an obstacle is reached (i.e. detected by the agents sensing

methods) at any point during the agent’s traversal towards the goal, the agent stops, and the

algorithm begins calculaGng a new path to the goal using the agent’s new posiGon [Stentz,

1995b]. That is, an updated snapshot of the current state of the environment is taken, and a

new path is planned. Only once the computaGon of the new path is complete can the agent

begin moving towards the goal again.

MulGple factors greatly decrease the computaGonal efficiency of this technique of

pathfinding. First, because BFR always produces an opGmal path to the goal, if one exists, more

compuGng power may be used to calculate an opGmal path than what is necessary. For

example, a car in a racing video game may not have to take the fastest path around a racetrack -

it may be adequate to take a path that is slightly longer and slower [Wang and Lin, 2012].

Second, when the algorithm begins calculaGng a new path it will search its problem space in

every direcGon around the agent even though it is unlikely the agent will perform a complete

backtrack rather than slightly deflecGng its path around the obstacle [Stentz, 1995b]. Third, if

the environment is large or if the goal is far away, searching for an opGmal path will take more

Gme [Stentz, 1995b]. Due to these factors, among others, BFR is computaGonally heavy and

therefore oeen too slow for the agent to move and respond quickly in a dynamic environment

in real-Gme due to the constant need to stop at an obstacle and wait for a new path to be

calculated before moving again.

Tyler Loewen - loewent4@myumanitoba.ca

3. Basic D* and Focussed D*

As described in [Stentz, 1995b, 1995a], the algorithm Basic D* (BD*) closely resembles

Brute-Force Replanner (BFR) except BD* is dynamic in the way that it can modify cost heurisGcs

dynamically while the algorithm is execuGng. Like BFR, BD* also produces an opGmal soluGon.

In BD*, the problem space (i.e. the environment) can be broken up into a set of states, each of

which represent a locaGon in the environment. Each locaGon is connected by direcGonal arcs

that each have a cost associated with them. Arcs between states may be either direcGonal or bi-

direcGonal. A direcGonal state only allows the agent to travel in one direcGon across the two

states connected by the arc. There may also not be an arc between two states meaning the

agent cannot travel between the two states. Each state keeps an esGmate of the cost to traverse

to the goal state relaGve to its posiGon. This cost is determined by summing the cost of all arcs

between the current state and the goal state, where the cost associated with each arc is

determined by some cost funcGon. As the agent moves across arcs from one state to another,

the cost of traversing between the two states is added to the total travel cost of reaching the

goal state.

The improved efficiency of BD* compared to BFR is due to mulGple factors. The first

factor is the agents ability to detect an obstacle with its sensors during execuGon of the

algorithm, allowing the algorithm to only update the cost associated with states in the local

vicinity of the agent [Stentz, 1995a]. The Focussed D* algorithm (FD*) described in [Stentz,

1995b] improves on this by introducing a heurisGc that only updates costs associated with

states located in the general direcGon the agent is traveling. This reduces the number of states

that need to have their cost updated and thus increases the efficiency by only compuGng the

Tyler Loewen - loewent4@myumanitoba.ca

opGmal path for a limited number of states compared to the whole problem space [Stentz,

1995b, 1995a].

This can be seen from Figure 1 and Figure 2 from [Stentz, 1995b]. The figures contain

arrows which represents the arcs between two different states, black shapes that represent

obstacles unknown to the agent at the start of navigaGon, and a start and goal state S and G

respecGvely. Figure 1 represents the BD* algorithm presented in [Stentz, 1995a] and Figure 2

represents the FD* algorithm presented in [Stentz, 1995b]. As can be seen from comparing the

number of visited states with a calculated cost (arrows) between Figure 2 and Figure 1, it is clear

that the FD* algorithm has a smaller search space compared to the BD* algorithm. This reduced

number of visited states is the effect of focusing the cost propagaGon to states that are in the

general direcGon the agent is traveling.

Figure 1: Basic D* Algorithm [Stentz, 1995b] Figure 2: Focussed D* Algorithm [Stentz, 1995b]

The second factor making BD* more efficient than BFR is that the agent usually makes

incremental progress towards its goal due to the higher cost imposed on the states previously

visited by the agent [Stentz, 1995b]. This discourages backtracking and means as the agent gets

closer to its goal the length of the path between the agent and its goal conGnues to get shorter

Tyler Loewen - loewent4@myumanitoba.ca

[Stentz, 1995b]. Because backtracking is discouraged through high-cost states and the cost

associated with states is only updated for states local to the direcGon the agent is traveling, the

performance of the algorithms is greatly improved [Stentz, 1995b]. These differences between

the three algorithms allow BD* and FD* to be used for real-Gme agent navigaGon in an

environment with staGc and dynamic obstacles and where the agent only has parGal or no

known knowledge of the obstacles in the environment.

4. Brute-Force Replanner vs Basic D* and Focussed D*

Four different algorithms were tested in [Stentz, 1995b] to verify the opGmality of the

algorithms and to compare their run-Gmes. First, the Brute-Force Replanner (BFR) which is

described in secGon 2. Second is Basic D* (BD*) as described in secGon 3. Third is Focussed D*

with Minimal IniGalizaGon (FD*M) as described in secGon 3, which does not propagate path

costs to every state. Fourth is Focussed D* with Full IniGalizaGon, which will not be included in

this comparison. Each environment used for the test was square in dimensions with a start and

goal state in the same posiGon for each environment. Each environment had a mixture of staGc

objects known to the agent and dynamic objects which were not known to the agent. The agent

was equipped with a sensor to detect obstacles. Each algorithm was run on five randomly

generated environments. The off-line Gme is the Gme it took to compute the iniGal path from

the agent to the goal state using the known staGc environment. This is computed before the

agent begins traversing the environment. The on-line Gme is the Gme needed to compute all

replanning operaGons needed for the agent to reach the goal.

Brute-Force Replanner (Speedup) Basic D* (Speedup) Focussed D* with Minimal IniGalizaGon
(Speedup)

Off-line: 10
4 0.09 sec 1.02 sec 0.16 sec

Tyler Loewen - loewent4@myumanitoba.ca

Table 1: Results from tests [Stentz, 1995b] (modified)

Table 1 describes the test results found in [Stentz, 1995b] with an addiGonal Gme metric

represenGng the sum of the off-line and on-line porGon of an algorithms computaGon Gme as

well as a speedup factor that represents how many Gmes faster the algorithm is compared to

BFR. As seen in Table 1, the BFR algorithm has the longest total compute Gme for every map

size. On the other hand, FD*M is the fastest in total Gme for all map sizes making it good if off-

line and on-line Gmes are considered to be the same [Stentz, 1995b]. Looking at the off-line and

on-line compute Gmes, each algorithm can be the correct choice depending on the specific

requirements of the problem. If reducing off-line computaGon Gme is the goal, then BFR is a

good choice as the off-line computaGon Gme remains very short compared to the other

algorithms, even on the largest 10
6

map. If real-Gme dynamic pathfinding is a requirement of

the domain, then FD*M is a good choice. This algorithm has a short on-line computaGon Gme,

almost as short as the on-line Gmes for BD* with the added benefit of much shorter off-line

Gmes. This would be beneficial in situaGons where there is limited Gme available for off-line

computaGon before the pathfinding begins [Stentz, 1995b]. As seen from the speedup factor for

On-line: 10
4 13.07 sec 1.31 sec 1.70 sec

Total Time: 10
4 13.16 sec (1x) 2.33 sec (5.64x) 1.86 sec (7.08x)

Off-line: 10
5 0.41 sec 12.55 sec 0.68 sec

On-line: 10
5 11.86 min 16.94 sec 18.20 sec

Total Time: 10
5 11.87 min (1x) 29.49 sec (24.15x) 18.88 sec (37.72x)

Off-line: 10
6 4.82 sec 129.08 sec 9.53 sec

On-line: 10
6 50.63 min 21.47 sec 41.72 sec

Total Time: 10
6 55.71 min (1x) 150.55 sec (22.20x) 51.25 sec (65.22x)

Tyler Loewen - loewent4@myumanitoba.ca

each algorithm, FD*M has the largest speedup factor for every map size when compared to the

other algorithms.

5. Neural Networks

Research has tackled the challenges of real-Gme pathfinding in games through the use of

neural networks (NN) [Graham et al., 2005]. More games are becoming dynamic in nature due

to an increase in the popularity of middleware physics engines that allow developers to easily

add complex physics to their games [Graham et al., 2005]. Therefore, game worlds are oeen

changing dynamically as the agent is acGvely navigaGng the world, leading to new obstacles the

agent has to handle. Because of the larger number of games with dynamic environments, there

is a higher demand than ever for pathfinding algorithms that can plan realisGc and real-Gme

paths for enGGes in a dynamic game world. There are oeen problems with real-Gme pathfinding

approaches such as Basic D* (BD*) and Focussed D* (FD*) menGoned in [Stentz, 1995b, 1995a;

Graham et al., 2005]. One of these problems not addressed in any previous secGon of this paper

is the problem of agents only being able to react to obstacles once the agent is within a short

range of the obstacle. This problem is inherent in the short range of the agent’s sensors,

whether the sensors or physical infrared sensors or digital ray casts, which can lead to agents

only detecGng obstacles once they have nearly collided already [Graham et al., 2005]. The

second problem is agent’s movements appearing unrealisGc in nature. An agent may be

expected to move in a natural curving or winding path but may appear to move in a straight line

from one point to another [Graham et al., 2005]. This linear movement is oeen due to the

decrease in the number of nodes in the search space, and therefore, granularity of the agent’s

movements [Graham et al., 2005].

Tyler Loewen - loewent4@myumanitoba.ca

As described in secGon 3 and [Stentz, 1995b, 1995a], the D* algorithms compute

opGmal paths in a real-Gme environment, but these algorithms work best for an agent that

moves slowly and is okay with pausing for short periods of Gme while a path is being replanned.

There are many different situaGons where the demands for real-Gme pathfinding are much

higher, such as games. Many game worlds are constantly changing and require almost

instantaneous responses from agents to make the world seem realisGc and immersive to

players. This is difficult to achieve with BFR, BD*, and FD* due to generally high replanning

costs, especially when dozens or even hundreds of pathfinding agents are present [Graham et

al., 2005].

The idea of using a NN for pathfinding presented in [Graham et al., 2005] allows for the

agent to navigate a world by learning how to reach its goal on its own instead of simply

following tradiGonal paths created by A* and D* algorithms. Two requirements are defined in

[Graham et al., 2005] for this type of learning to be possible. First, the agent needs a method of

detecGng its surroundings in the world so it can navigate around them successfully. To address

this requirement, the agent can be configured to cast mulGple rays into the game world in a

forward direcGon which will detect any intersecGon with obstacles. Second, the agent needs a

method of processing the informaGon it receives from its sensors to determine the correct

movement to make next. To address this requirement, [Graham et al., 2005] uses an ArGficial

Neural Network (ANN) with the data from the sensor as input to the NN which processes the

data and produces output data that the agent uses to navigate.

For a NN to be able to solve a specific problem it needs to be trained through

reinforcement learning [Graham et al., 2005]. Reinforcement learning works by execuGng the

algorithm mulGple Gmes with agents, and through some rewarding technique, ranks the agent’s

performance by this score. The higher an agent’s score, the beker its performance and the

Tyler Loewen - loewent4@myumanitoba.ca

more desirable its traits are. By keeping the highest-scoring agent’s traits, the next execuGon of

the algorithm will hopefully produce even higher scoring agents that are closer to the opGmal

agent [Graham et al., 2005]. To help train the agents, [Graham et al., 2005] created a set of

maps varying from simple to complex for the agents to navigate. To start, each agent was tasked

with navigaGng towards a moving goal in a map with no obstacles or sensors on the agents.

Next, they added obstacles to the map and sensors to the agents to receive sensor input and

allowed the agents to roam the map learning how to navigate around obstacles. Next, they

added a goal for the agents to reach while navigaGng the obstacle-filled map where input to the

NN was the agent’s sensor data and its relaGve posiGon to the goal. During this last stage of

learning, the agents had a difficult Gme learning how to successfully navigate the obstacles. This

required creaGng a specific set of maps with carefully laid out obstacles.

There are some major benefits to using NNs. One benefit being the ability of the agent

to successfully handle pathfinding situaGons it has never encountered before through training

[Graham et al., 2005]. Another benefit is the low computaGon costs while the agent is

pathfinding due to not needing to recalculate tradiGonal node-based paths using slow

algorithms. A drawback of pathfinding using NN is the difficulty of training agents [Graham et

al., 2005]. The method of training can greatly affect the success the agent has in finding the

goal, as seen by the difficulGes found in [Graham et al., 2005] to train agents using a general

configuraGon of obstacles in a map. Another downside to the NN pathfinding implementaGon in

[Graham et al., 2005] is the jikery path of the agent as seen in Figure 3. Because NN pathfinding

determines a path through reinforced learning and not pre-determined waypoints or nodes,

applying a method of path smoothing to the agent’s path may be difficult because the next

target locaGon of the agent is not known.

Tyler Loewen - loewent4@myumanitoba.ca

 Figure 3: Real-Gme vs tradiGonal pathfinding [Graham et al., 2005]

6. Conclusions

This paper introduces the concepts of dynamic pathfinding and the algorithms and

variaGons that can be used to navigate a dynamic environment effecGvely. It describes Brute-

Force Replanner, a variaGon of A* which computes a complete path before navigaGon begins

and then as the agent reaches an obstacle, recomputes a new path given the agents updated

posiGon and the new state of the environment. This method was found to be much slower

overall than Basic D* and Focussed D* which allow for the cost associated with states to be

modified dynamically during execuGon of the algorithm. Even though the D* algorithms were a

large improvement over the Brute-Force Replanner, they sGll lacked the speed required to be

effecGve in domains that require real-Gme dynamic planning with fast response Gmes such as

games. To address the problem in the domain of games the paper described a pathfinding

Tyler Loewen - loewent4@myumanitoba.ca

algorithm implemented using neural networks instead of more tradiGonal node-based

traversals. The neural network allowed for true real-Gme pathfinding with large amounts of

simultaneous agents through the use of a training method called reinforcement learning.

References
[Stentz, 1995b] Stentz, A., “The focussed D* algorithm for real-Gme replanning”. 14th

Interna+onal Joint Conference on Ar+ficial Intelligence (IJCAI), 95(August), 1652–1659.

[Van Den Berg et al., 2006] Van Den Berg, J., Ferguson, D., & Kuffner, J., “AnyGme path planning
and replanning in dynamic environments”. Proceedings - IEEE Interna+onal Conference on
Robo+cs and Automa+on, 2006(i), 2366–2371.

[Graham et al., 2005] Graham, R., McCabe, H., & Sheridan, S., “RealisGc agent movement in
dynamic game environments”. Proceedings of DiGRA 2005 Conference: Changing Views -
Worlds in Play.

[Stentz, 1995a] Stentz, A., “OpGmal and efficient path planning for unknown and dynamic
environments”. Interna+onal Journal of Robo+cs and Automa+on, 10(3), 89–100.

[Cui and Hao Shi, 2011] Cui, X., & Hao Shi., “DirecGon Oriented Pathfinding In Video Games”.
Interna+onal Journal of Ar+ficial Intelligence & Applica+ons, 2(4), 1–11.

[Elshamli et al., 2004] Elshamli, A., Abdullah, H. A., & Areibi, S., “GeneGc algorithm for dynamic
path planning”. Canadian Conference on Electrical and Computer Engineering, 2(June).

[Kumari and Geethanjali, 2010] Kumari, S., & Geethanjali, N., “A survey on shortest path rouGng
algorithms for public transport travel”. Global Journal of Computer Science and Technology,
9(5), 73–76.

[Wang and Lin, 2012] Wang, J.-Y., & Lin, Y.-B., “Game AI: SimulaGng Car Racing Game by Applying
Pathfinding Algorithms”. Interna+onal Journal of Machine Learning and Compu+ng, 2(1),
13–18.

